Description
Teensy 4.0 features an ARM Cortex-M7 processor at 600MHz, with an NXP iMXRT1062 chip, the fastest microcontroller available today. Teensy 4.0 is the same size and shape as Teensy 3.2 and retains compatibility with most pin functions on Teensy 3.2.
When running at 600 MHz, Teensy 4.0 consumes approximately 100mA current. Teensy 4.0 provides support for dynamic clock scaling. Unlike traditional microcontrollers, where changing the clock speed causes wrong baud rates and other issues, Teensy 4.0 hardware and Teensyduino’s software support for Arduino timing functions are designed to allow dynamic speed changes. Serial baud rates, audio streaming sample rates, Arduino functions like delay() and Millis (), and Teensyduino’s extensions like IntervalTimer and elapsedMillis, continue to work properly while the CPU changes speed. Teensy 4.0 also provides a power shut-off feature. By connecting a pushbutton to the On/Off pin, the 3.3V power supply can be completely disabled by holding the button for 5 seconds and turned back on by a brief button press. If a coin cell is connected to VBAT, Teensy 4.0’s RTC also continues to keep track of date & time while the power is off. Teensy 4.0 can also be overclocked, well beyond 600MHz!
The ARM Cortex-M7 brings many powerful CPU features to a real-time microcontroller platform. Cortex-M7 is a dual-issue superscalar processor, meaning the M7 can execute two instructions per clock cycle, at 600MHz! Of course, executing two simultaneously depends upon the compiler ordering instructions and registers. Initial benchmarks have shown C++ code compiled by Arduino tends to achieve two instructions about 40% to 50% of the time while performing numerically intensive work using integers and pointers. Cortex-M7 is the first ARM microcontroller to use branch prediction. On M4, loops, and other codes many branches take three clock cycles. With M7, after a loop has been executed a few times, the branch prediction removes that overhead, allowing the branch instruction to run in only a single clock cycle.
Tightly Coupled Memory is a special feature that allows Cortex-M7 fast single-cycle access to memory using a pair of 64-bit wide buses. The ITCM bus provides a 64-bit path to fetch instructions. The DTCM bus is a pair of 32-bit paths, allowing M7 to perform up to two separate memory accesses in the same cycle. These extremely high-speed buses are separate from M7’s main AXI bus, which accesses other memory and peripherals. 512K of memory can be accessed as tightly coupled memory. Teensyduino automatically allocates your Arduino sketch code into ITCM and all non-malloc memory use to the fast DTCM, unless you add extra keywords to override the optimized default. Memory not accessed on the tightly coupled buses is optimized for DMA access by peripherals. Because the bulk of M7’s memory access is done on the two tightly coupled buses, powerful DMA-based peripherals have excellent access to the non-TCM memory for highly efficient I/O.
Teensy 4.0’s Cortex-M7 processor includes a floating point unit (FPU) which supports both 64-bit “double” and 32-bit “float”. With M4’s FPU on Teensy 3.5 & 3.6 and Atmel SAMD51 chips, only 32-bit float is accelerated hardware. Any use of double, double functions like log(), sin(), and cos() means slow software-implemented math. Teensy 4.0 executes all of these with FPU hardware.